战略所概况
战略所介绍
组织架构
现任领导
战略所研究
政策研究
数字经济
人工智能
出海战略
企业家精神
战略所服务
内部登录
联系我们
首页
首页
>
学术科研
>
正文
首页
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs
题目
Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs
作者
彭毅杰
作者单位
Peking Univ, PKU Wuhan Inst Artificial Intelligence, Guanghua Sch Management, Beijing, Peoples R China Xijiang Lab, Changsha, Peoples R China Univ Maryland, Robert H Smith Sch Business, College Pk, MD USA Univ Maryland, Inst Syst Res, College Pk, MD USA SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada Univ Rennes, INRIA, IRISA, CNRS, Campus Beaulieu, Rennes, France
关键词:
GRADIENT ESTIMATION PERTURBATION ANALYSIS DERIVATIVE ESTIMATOR SENSITIVITY-ANALYSIS OPTIMIZATION SYSTEMS DESIGN
时间:
2025年3月1日
出版者:
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
摘要
We propose a new unbiased stochastic gradient estimator for a family of stochastic models driven by uniform random numbers as inputs. Dropping the requirement that the tails of the density of the input random variables decay smoothly, the estimator extends the applicability of the generalized likelihood ratio (GLR) method. We demonstrate the new estimator for several general classes of input random variates, including independent inverse transform random variates and dependent input random variables governed by an Archimedean copula. We show how the new estimator works in settings such as density estimation, and we illustrate applications to credit risk derivatives. Numerical experiments substantiate broad applicability and flexibility in dealing with discontinuities in the
URL
http://hdl.handle.net/20.500.11897/727579
ISSN
0377-2217
DOI
10.1016/j.ejor.2024.10.001
收录情况
SCI(E)
作者单位
Peking Univ, PKU Wuhan Inst Artificial Intelligence, Guanghua Sch Management, Beijing, Peoples R China Xijiang Lab, Changsha, Peoples R China Univ Maryland, Robert H Smith Sch Business, College Pk, MD USA Univ Maryland, Inst Syst Res, College Pk, MD USA SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ, Canada Univ Rennes, INRIA, IRISA, CNRS, Campus Beaulieu, Rennes, France
时间
2025年3月1日
出版者
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
URL
http://hdl.handle.net/20.500.11897/727579
ISSN
0377-2217
DOI
10.1016/j.ejor.2024.10.001
收录情况
SCI(E)
分类
TOP