战略所概况
战略所介绍
组织架构
现任领导
战略所研究
政策研究
数字经济
人工智能
出海战略
企业家精神
战略所服务
内部登录
联系我们
首页
首页
>
学术科研
>
正文
首页
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
Unified specification tests in partially linear time series models
题目
Unified specification tests in partially linear time series models
作者
孙爽; 宋泽宁; 宋晓军
作者单位
Tsinghua Univ, Ctr Stat Sci, Beijing, Peoples R China Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China Nankai Univ, Sch Stat & Data Sci, LPMC & KLMDASR, Tianjin, Peoples R China Peking Univ, Guanghua Sch Management, Dept Business Stat & Econometr, Beijing, Peoples R China
关键词:
OF-FIT TESTS SINGLE-INDEX FUNCTIONAL FORM CONSISTENT TEST REGRESSION VOLATILITY BOOTSTRAP CHECKS DIFFERENCE INFERENCE
时间:
2025年3月1日
出版者:
COMPUTATIONAL STATISTICS & DATA ANALYSIS
摘要
Based on a residual marked empirical process, Cram & eacute;r-von Mises and Kolmogorov-Smirnov tests are proposed for the correct specification of the nonparametric components in partially linear time series models. The tests are unified in the sense that the asymptotic distribution of residual marked empirical process is invariant across different n(v)-consistent estimators in calculating residuals (where v > 1/4) under the null. In addition, the residual marked empirical process has the same power property under the sequence of local alternatives regardless of the estimators used. Achieved through a projection method, these features also enable using a computationally convenient multiplier bootstrap to approximate the unified null distributions of the test statistics. Simulations show satisfactory finite-sample performance of the proposed method. The application to validate the parametric form of conditional variance in the ARCH-X model is also highlighted, along with an empirical analysis of the conditional variance of the FTSE 100 index return series.
URL
http://hdl.handle.net/20.500.11897/725796
ISSN
0167-9473
DOI
10.1016/j.csda.2024.108074
收录情况
SCI(E)
作者单位
Tsinghua Univ, Ctr Stat Sci, Beijing, Peoples R China Tsinghua Univ, Dept Ind Engn, Beijing, Peoples R China Nankai Univ, Sch Stat & Data Sci, LPMC & KLMDASR, Tianjin, Peoples R China Peking Univ, Guanghua Sch Management, Dept Business Stat & Econometr, Beijing, Peoples R China
时间
2025年3月1日
出版者
COMPUTATIONAL STATISTICS & DATA ANALYSIS
URL
http://hdl.handle.net/20.500.11897/725796
ISSN
0167-9473
DOI
10.1016/j.csda.2024.108074
收录情况
SCI(E)
分类
TOP