战略所概况
战略所介绍
组织架构
现任领导
战略所研究
政策研究
数字经济
人工智能
出海战略
企业家精神
战略所服务
内部登录
联系我们
首页
首页
>
学术科研
>
正文
首页
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
CoNNect: A Swiss-Army-Knife Regularizer for Pruning of Neural Networks
题目
CoNNect: A Swiss-Army-Knife Regularizer for Pruning of Neural Networks
作者
Franssen,Christian Jiang,Jinyang Peng,Yijie Heidergott,Bernd
作者单位
Department of Operations Analytics, VU Amsterdam, Amsterdam, Netherlands Guanghua School of Management, Peking University, Beijing, China
关键词:
CoNNect A SwissArmyKnife Regularizer for Pruning of Neural Networks
时间:
2025年2月2日
出版者:
arXiv
摘要
Pruning encompasses a range of techniques aimed at increasing the sparsity of neural networks (NNs). These techniques can generally be framed as minimizing a loss function subject to an L0norm constraint. This paper introduces CoNNect, a novel differentiable regularizer for sparse NN training that ensures connectivity between input and output layers. CoNNect integrates with established pruning strategies and supports both structured and unstructured pruning. We proof that CoNNect approximates L0-regularization, guaranteeing maximally connected network structures while avoiding issues like layer collapse. Numerical experiments demonstrate that CoNNect improves classical pruning strategies and enhances state-of-the-art one-shot pruners, such as DepGraph and LLM-pruner. Copyright ?? 2025, The Authors. All rights reserved.
URL
http://hdl.handle.net/20.500.11897/740920
ISSN
10.48550/arXiv.2502.00744
收录情况
EI
作者单位
Department of Operations Analytics, VU Amsterdam, Amsterdam, Netherlands Guanghua School of Management, Peking University, Beijing, China
时间
2025年2月2日
出版者
arXiv
URL
http://hdl.handle.net/20.500.11897/740920
ISSN
10.48550/arXiv.2502.00744
DOI
收录情况
EI
分类
TOP