战略所概况
战略所介绍
组织架构
现任领导
战略所研究
政策研究
数字经济
人工智能
出海战略
企业家精神
战略所服务
内部登录
联系我们
首页
首页
>
学术科研
>
正文
首页
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
战略所人物
活动会议
合作交流
战略所动态
通知公告
视频
学术科研
Forecasting China's Short-Term Energy Futures Price Using a Novel Secondary Decomposition-Optimized System
题目
Forecasting China's Short-Term Energy Futures Price Using a Novel Secondary Decomposition-Optimized System
作者
Jiang, Zhe Zhang, Zili Zhang, Lin
作者单位
Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China Harvest Fund Management Co Ltd, Beijing 100020, Peoples R China City Univ Hong Kong, Sch Energy & Environm, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
关键词:
EMPIRICAL MODE DECOMPOSITION EXTREME LEARNING-MACHINE CRUDE-OIL PRICE WAVELET TRANSFORM
时间:
2025年1月11日
出版者:
COMPUTATIONAL ECONOMICS
摘要
Energy futures price forecasting is challenging due to the nonlinear and fluctuant characteristics. Existing literature mainly uses decomposition and ensemble method which neglects the intrinsic mode function obtained by the first decomposition could be irregular and thus reduces the prediction accuracy. To fill the research gap, a novel secondary decomposition-optimized-KELM-ensemble forecasting system is proposed to perform short-term forecasting in this study, which synthesizes two-stage data decomposition method, Sparrow search optimization algorithm, and extreme learning machine with kernel. We test the method with two energy futures prices in China, demonstrating that both one-day and three-day ahead forecasting results obtained are more accurate and stable compared to existing models in the literature, such as BPNN (improved by 58.42% on one-day ahead and 56.44% on three-day ahead by MAE) and KELM (improved by 56.40% on one-day ahead and 49.04% on three-day ahead by MAE). Therefore, the forecasting system introduced in this paper can provide useful implications for both policy makers and financial practitioners in the energy sector.
URL
http://hdl.handle.net/20.500.11897/740370
ISSN
0927-7099
DOI
10.1007/s10614-024-10840-w
收录情况
SCI(E) SSCI
作者单位
Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China Harvest Fund Management Co Ltd, Beijing 100020, Peoples R China City Univ Hong Kong, Sch Energy & Environm, Kowloon, Tat Chee Ave, Hong Kong, Peoples R China
时间
2025年1月11日
出版者
COMPUTATIONAL ECONOMICS
URL
http://hdl.handle.net/20.500.11897/740370
ISSN
0927-7099
DOI
10.1007/s10614-024-10840-w
收录情况
SCI(E) SSCI
分类
TOP